'''
EffectWidget
============
.. versionadded:: 1.9.0
The :class:`EffectWidget` is able to apply a variety of fancy
graphical effects to
its children. It works by rendering to a series of
:class:`~kivy.graphics.Fbo` instances with custom opengl fragment shaders.
As such, effects can freely do almost anything, from inverting the
colors of the widget, to anti-aliasing, to emulating the appearance of a
crt monitor!
.. warning::
This code is still experimental, and its API is subject to change in a
future version.
The basic usage is as follows::
w = EffectWidget()
w.add_widget(Button(text='Hello!')
w.effects = [InvertEffect(), HorizontalBlurEffect(size=2.0)]
The equivalent in kv would be::
#: import ew kivy.uix.effectwidget
EffectWidget:
effects: ew.InvertEffect(), ew.HorizontalBlurEffect(size=2.0)
Button:
text: 'Hello!'
The effects can be a list of effects of any length, and they will be
applied sequentially.
The module comes with a range of prebuilt effects, but the interface
is designed to make it easy to create your own. Instead of writing a
full glsl shader, you provide a single function that takes
some inputs based on the screen (current pixel color, current widget
texture etc.). See the sections below for more information.
Usage Guidelines
----------------
It is not efficient to resize an :class:`EffectWidget`, as
the :class:`~kivy.graphics.Fbo` is recreated on each resize event.
If you need to resize frequently, consider doing things a different
way.
Although some effects have adjustable parameters, it is
*not* efficient to animate these, as the entire
shader is reconstructed every time. You should use glsl
uniform variables instead. The :class:`AdvancedEffectBase`
may make this easier.
.. note:: The :class:`EffectWidget` *cannot* draw outside its own
widget area (pos -> pos + size). Any child widgets
overlapping the boundary will be cut off at this point.
Provided Effects
----------------
The module comes with several pre-written effects. Some have
adjustable properties (e.g. blur radius). Please see the individual
effect documentation for more details.
- :class:`MonochromeEffect` - makes the widget grayscale.
- :class:`InvertEffect` - inverts the widget colors.
- :class:`ChannelMixEffect` - swaps color channels.
- :class:`ScanlinesEffect` - displays flickering scanlines.
- :class:`PixelateEffect` - pixelates the image.
- :class:`HorizontalBlurEffect` - Gaussuan blurs horizontally.
- :class:`VerticalBlurEffect` - Gaussuan blurs vertically.
- :class:`FXAAEffect` - applies a very basic anti-aliasing.
Creating Effects
----------------
Effects are designed to make it easy to create and use your own
transformations. You do this by creating and using an instance of
:class:`EffectBase` with your own custom :attr:`EffectBase.glsl`
property.
The glsl property is a string representing part of a glsl fragment
shader. You can include as many functions as you like (the string
is simply spliced into the whole shader), but it
must implement a function :code:`effect` as below::
vec4 effect(vec4 color, sampler2D texture, vec2 tex_coords, vec2 coords)
{
// ... your code here
return something; // must be a vec4 representing the new color
}
The full shader will calculate the normal pixel color at each point,
then call your :code:`effect` function to transform it. The
parameters are:
- **color**: The normal color of the current pixel (i.e. texture
sampled at tex_coords).
- **texture**: The texture containing the widget's normal background.
- **tex_coords**: The normal texture_coords used to access texture.
- **coords**: The pixel indices of the current pixel.
The shader code also has access to two useful uniform variables,
:code:`time` containing the time (in seconds) since the program start,
and :code:`resolution` containing the shape (x pixels, y pixels) of
the widget.
For instance, the following simple string (taken from the `InvertEffect`)
would invert the input color but set alpha to 1.0::
vec4 effect(vec4 color, sampler2D texture, vec2 tex_coords, vec2 coords)
{
return vec4(1.0 - color.xyz, 1.0);
}
You can also set the glsl by automatically loading the string from a
file, simply set the :attr:`EffectBase.source` property of an effect.
'''
from kivy.clock import Clock
from kivy.uix.relativelayout import RelativeLayout
from kivy.properties import (StringProperty, ObjectProperty, ListProperty,
NumericProperty, DictProperty)
from kivy.graphics import (RenderContext, Fbo, Color, Rectangle,
Translate, PushMatrix, PopMatrix, ClearColor,
ClearBuffers)
from kivy.event import EventDispatcher
from kivy.base import EventLoop
from kivy.resources import resource_find
__all__ = ('EffectWidget', 'EffectBase', 'AdvancedEffectBase',
'MonochromeEffect', 'InvertEffect', 'ChannelMixEffect',
'ScanlinesEffect', 'PixelateEffect',
'HorizontalBlurEffect', 'VerticalBlurEffect',
'FXAAEffect')
shader_header = '''
#ifdef GL_ES
precision highp float;
#endif
/* Outputs from the vertex shader */
varying vec4 frag_color;
varying vec2 tex_coord0;
/* uniform texture samplers */
uniform sampler2D texture0;
'''
shader_uniforms = '''
uniform vec2 resolution;
uniform float time;
'''
shader_footer_trivial = '''
void main (void){
gl_FragColor = frag_color * texture2D(texture0, tex_coord0);
}
'''
shader_footer_effect = '''
void main (void){
vec4 normal_color = frag_color * texture2D(texture0, tex_coord0);
vec4 effect_color = effect(normal_color, texture0, tex_coord0,
gl_FragCoord.xy);
gl_FragColor = effect_color;
}
'''
effect_trivial = '''
vec4 effect(vec4 color, sampler2D texture, vec2 tex_coords, vec2 coords)
{
return color;
}
'''
effect_monochrome = '''
vec4 effect(vec4 color, sampler2D texture, vec2 tex_coords, vec2 coords)
{
float mag = 1.0/3.0 * (color.x + color.y + color.z);
return vec4(mag, mag, mag, color.w);
}
'''
effect_invert = '''
vec4 effect(vec4 color, sampler2D texture, vec2 tex_coords, vec2 coords)
{
return vec4(1.0 - color.xyz, color.w);
}
'''
effect_mix = '''
vec4 effect(vec4 color, sampler2D texture, vec2 tex_coords, vec2 coords)
{{
return vec4(color.{}, color.{}, color.{}, color.w);
}}
'''
effect_blur_h = '''
vec4 effect(vec4 color, sampler2D texture, vec2 tex_coords, vec2 coords)
{{
float dt = ({} / 4.0) * 1.0 / resolution.x;
vec4 sum = vec4(0.0);
sum += texture2D(texture, vec2(tex_coords.x - 4.0*dt, tex_coords.y))
* 0.05;
sum += texture2D(texture, vec2(tex_coords.x - 3.0*dt, tex_coords.y))
* 0.09;
sum += texture2D(texture, vec2(tex_coords.x - 2.0*dt, tex_coords.y))
* 0.12;
sum += texture2D(texture, vec2(tex_coords.x - dt, tex_coords.y))
* 0.15;
sum += texture2D(texture, vec2(tex_coords.x, tex_coords.y))
* 0.16;
sum += texture2D(texture, vec2(tex_coords.x + dt, tex_coords.y))
* 0.15;
sum += texture2D(texture, vec2(tex_coords.x + 2.0*dt, tex_coords.y))
* 0.12;
sum += texture2D(texture, vec2(tex_coords.x + 3.0*dt, tex_coords.y))
* 0.09;
sum += texture2D(texture, vec2(tex_coords.x + 4.0*dt, tex_coords.y))
* 0.05;
return vec4(sum.xyz, color.w);
}}
'''
effect_blur_v = '''
vec4 effect(vec4 color, sampler2D texture, vec2 tex_coords, vec2 coords)
{{
float dt = ({} / 4.0)
* 1.0 / resolution.x;
vec4 sum = vec4(0.0);
sum += texture2D(texture, vec2(tex_coords.x, tex_coords.y - 4.0*dt))
* 0.05;
sum += texture2D(texture, vec2(tex_coords.x, tex_coords.y - 3.0*dt))
* 0.09;
sum += texture2D(texture, vec2(tex_coords.x, tex_coords.y - 2.0*dt))
* 0.12;
sum += texture2D(texture, vec2(tex_coords.x, tex_coords.y - dt))
* 0.15;
sum += texture2D(texture, vec2(tex_coords.x, tex_coords.y))
* 0.16;
sum += texture2D(texture, vec2(tex_coords.x, tex_coords.y + dt))
* 0.15;
sum += texture2D(texture, vec2(tex_coords.x, tex_coords.y + 2.0*dt))
* 0.12;
sum += texture2D(texture, vec2(tex_coords.x, tex_coords.y + 3.0*dt))
* 0.09;
sum += texture2D(texture, vec2(tex_coords.x, tex_coords.y + 4.0*dt))
* 0.05;
return vec4(sum.xyz, color.w);
}}
'''
effect_postprocessing = '''
vec4 effect(vec4 color, sampler2D texture, vec2 tex_coords, vec2 coords)
{
vec2 q = tex_coords * vec2(1, -1);
vec2 uv = 0.5 + (q-0.5);//*(0.9);// + 0.1*sin(0.2*time));
vec3 oricol = texture2D(texture,vec2(q.x,1.0-q.y)).xyz;
vec3 col;
col.r = texture2D(texture,vec2(uv.x+0.003,-uv.y)).x;
col.g = texture2D(texture,vec2(uv.x+0.000,-uv.y)).y;
col.b = texture2D(texture,vec2(uv.x-0.003,-uv.y)).z;
col = clamp(col*0.5+0.5*col*col*1.2,0.0,1.0);
//col *= 0.5 + 0.5*16.0*uv.x*uv.y*(1.0-uv.x)*(1.0-uv.y);
col *= vec3(0.8,1.0,0.7);
col *= 0.9+0.1*sin(10.0*time+uv.y*1000.0);
col *= 0.97+0.03*sin(110.0*time);
float comp = smoothstep( 0.2, 0.7, sin(time) );
//col = mix( col, oricol, clamp(-2.0+2.0*q.x+3.0*comp,0.0,1.0) );
return vec4(col, color.w);
}
'''
effect_pixelate = '''
vec4 effect(vec4 vcolor, sampler2D texture, vec2 texcoord, vec2 pixel_coords)
{{
vec2 pixelSize = {} / resolution;
vec2 xy = floor(texcoord/pixelSize)*pixelSize + pixelSize/2.0;
return texture2D(texture, xy);
}}
'''
effect_fxaa = '''
vec4 effect( vec4 color, sampler2D buf0, vec2 texCoords, vec2 coords)
{
vec2 frameBufSize = resolution;
float FXAA_SPAN_MAX = 8.0;
float FXAA_REDUCE_MUL = 1.0/8.0;
float FXAA_REDUCE_MIN = 1.0/128.0;
vec3 rgbNW=texture2D(buf0,texCoords+(vec2(-1.0,-1.0)/frameBufSize)).xyz;
vec3 rgbNE=texture2D(buf0,texCoords+(vec2(1.0,-1.0)/frameBufSize)).xyz;
vec3 rgbSW=texture2D(buf0,texCoords+(vec2(-1.0,1.0)/frameBufSize)).xyz;
vec3 rgbSE=texture2D(buf0,texCoords+(vec2(1.0,1.0)/frameBufSize)).xyz;
vec3 rgbM=texture2D(buf0,texCoords).xyz;
vec3 luma=vec3(0.299, 0.587, 0.114);
float lumaNW = dot(rgbNW, luma);
float lumaNE = dot(rgbNE, luma);
float lumaSW = dot(rgbSW, luma);
float lumaSE = dot(rgbSE, luma);
float lumaM = dot(rgbM, luma);
float lumaMin = min(lumaM, min(min(lumaNW, lumaNE), min(lumaSW, lumaSE)));
float lumaMax = max(lumaM, max(max(lumaNW, lumaNE), max(lumaSW, lumaSE)));
vec2 dir;
dir.x = -((lumaNW + lumaNE) - (lumaSW + lumaSE));
dir.y = ((lumaNW + lumaSW) - (lumaNE + lumaSE));
float dirReduce = max(
(lumaNW + lumaNE + lumaSW + lumaSE) * (0.25 * FXAA_REDUCE_MUL),
FXAA_REDUCE_MIN);
float rcpDirMin = 1.0/(min(abs(dir.x), abs(dir.y)) + dirReduce);
dir = min(vec2(FXAA_SPAN_MAX, FXAA_SPAN_MAX),
max(vec2(-FXAA_SPAN_MAX, -FXAA_SPAN_MAX),
dir * rcpDirMin)) / frameBufSize;
vec3 rgbA = (1.0/2.0) * (
texture2D(buf0, texCoords.xy + dir * (1.0/3.0 - 0.5)).xyz +
texture2D(buf0, texCoords.xy + dir * (2.0/3.0 - 0.5)).xyz);
vec3 rgbB = rgbA * (1.0/2.0) + (1.0/4.0) * (
texture2D(buf0, texCoords.xy + dir * (0.0/3.0 - 0.5)).xyz +
texture2D(buf0, texCoords.xy + dir * (3.0/3.0 - 0.5)).xyz);
float lumaB = dot(rgbB, luma);
vec4 return_color;
if((lumaB < lumaMin) || (lumaB > lumaMax)){
return_color = vec4(rgbA, color.w);
}else{
return_color = vec4(rgbB, color.w);
}
return return_color;
}
'''
[docs]class EffectBase(EventDispatcher):
'''The base class for GLSL effects. It simply returns its input.
See the module documentation for more details.
'''
glsl = StringProperty(effect_trivial)
'''The glsl string defining your effect function. See the
module documentation for more details.
:attr:`glsl` is a :class:`~kivy.properties.StringProperty` and
defaults to
a trivial effect that returns its input.
'''
source = StringProperty('')
'''The (optional) filename from which to load the :attr:`glsl`
string.
:attr:`source` is a :class:`~kivy.properties.StringProperty` and
defaults to ''.
'''
fbo = ObjectProperty(None, allownone=True)
'''The fbo currently using this effect. The :class:`EffectBase`
automatically handles this.
:attr:`fbo` is an :class:`~kivy.properties.ObjectProperty` and
defaults to None.
'''
def __init__(self, *args, **kwargs):
super(EffectBase, self).__init__(*args, **kwargs)
fbind = self.fbind
fbo_shader = self.set_fbo_shader
fbind('fbo', fbo_shader)
fbind('glsl', fbo_shader)
fbind('source', self._load_from_source)
[docs] def set_fbo_shader(self, *args):
'''Sets the :class:`~kivy.graphics.Fbo`'s shader by splicing
the :attr:`glsl` string into a full fragment shader.
The full shader is made up of :code:`shader_header +
shader_uniforms + self.glsl + shader_footer_effect`.
'''
if self.fbo is None:
return
self.fbo.set_fs(shader_header + shader_uniforms + self.glsl +
shader_footer_effect)
def _load_from_source(self, *args):
'''(internal) Loads the glsl string from a source file.'''
source = self.source
if not source:
return
filename = resource_find(source)
if filename is None:
return Logger.error('Error reading file {filename}'.
format(filename=source))
with open(filename) as fileh:
self.glsl = fileh.read()
[docs]class AdvancedEffectBase(EffectBase):
'''An :class:`EffectBase` with additional behavior to easily
set and update uniform variables in your shader.
This class is provided for convenience when implementing your own
effects: it is not used by any of those provided with Kivy.
In addition to your base glsl string that must be provided as
normal, the :class:`AdvancedEffectBase` has an extra property
:attr:`uniforms`, a dictionary of name-value pairs. Whenever
a value is changed, the new value for the uniform variable is
uploaded to the shader.
You must still manually declare your uniform variables at the top
of your glsl string.
'''
uniforms = DictProperty({})
'''A dictionary of uniform variable names and their values. These
are automatically uploaded to the :attr:`fbo` shader if appropriate.
uniforms is a :class:`~kivy.properties.DictProperty` and
defaults to {}.
'''
def __init__(self, *args, **kwargs):
super(AdvancedEffectBase, self).__init__(*args, **kwargs)
self.fbind('uniforms', self._update_uniforms)
def _update_uniforms(self, *args):
if self.fbo is None:
return
for key, value in self.uniforms.items():
self.fbo[key] = value
[docs] def set_fbo_shader(self, *args):
super(AdvancedEffectBase, self).set_fbo_shader(*args)
self._update_uniforms()
[docs]class MonochromeEffect(EffectBase):
'''Returns its input colors in monochrome.'''
def __init__(self, *args, **kwargs):
super(MonochromeEffect, self).__init__(*args, **kwargs)
self.glsl = effect_monochrome
[docs]class InvertEffect(EffectBase):
'''Inverts the colors in the input.'''
def __init__(self, *args, **kwargs):
super(InvertEffect, self).__init__(*args, **kwargs)
self.glsl = effect_invert
[docs]class ScanlinesEffect(EffectBase):
'''Adds scanlines to the input.'''
def __init__(self, *args, **kwargs):
super(ScanlinesEffect, self).__init__(*args, **kwargs)
self.glsl = effect_postprocessing
[docs]class ChannelMixEffect(EffectBase):
'''Mixes the color channels of the input according to the order
property. Channels may be arbitrarily rearranged or repeated.'''
order = ListProperty([1, 2, 0])
'''The new sorted order of the rgb channels.
order is a :class:`~kivy.properties.ListProperty` and defaults to
[1, 2, 0], corresponding to (g, b, r).
'''
def __init__(self, *args, **kwargs):
super(ChannelMixEffect, self).__init__(*args, **kwargs)
self.do_glsl()
def on_order(self, *args):
self.do_glsl()
def do_glsl(self):
letters = [{0: 'x', 1: 'y', 2: 'z'}[i] for i in self.order]
self.glsl = effect_mix.format(*letters)
[docs]class PixelateEffect(EffectBase):
'''Pixelates the input according to its
:attr:`~PixelateEffect.pixel_size`'''
pixel_size = NumericProperty(10)
'''
Sets the size of a new 'pixel' in the effect, in terms of number of
'real' pixels.
pixel_size is a :class:`~kivy.properties.NumericProperty` and
defaults to 10.
'''
def __init__(self, *args, **kwargs):
super(PixelateEffect, self).__init__(*args, **kwargs)
self.do_glsl()
def on_pixel_size(self, *args):
self.do_glsl()
def do_glsl(self):
self.glsl = effect_pixelate.format(float(self.pixel_size))
[docs]class HorizontalBlurEffect(EffectBase):
'''Blurs the input horizontally, with the width given by
:attr:`~HorizontalBlurEffect.size`.'''
size = NumericProperty(4.0)
'''The blur width in pixels.
size is a :class:`~kivy.properties.NumericProperty` and defaults to
4.0.
'''
def __init__(self, *args, **kwargs):
super(HorizontalBlurEffect, self).__init__(*args, **kwargs)
self.do_glsl()
def on_size(self, *args):
self.do_glsl()
def do_glsl(self):
self.glsl = effect_blur_h.format(float(self.size))
[docs]class VerticalBlurEffect(EffectBase):
'''Blurs the input vertically, with the width given by
:attr:`~VerticalBlurEffect.size`.'''
size = NumericProperty(4.0)
'''The blur width in pixels.
size is a :class:`~kivy.properties.NumericProperty` and defaults to
4.0.
'''
def __init__(self, *args, **kwargs):
super(VerticalBlurEffect, self).__init__(*args, **kwargs)
self.do_glsl()
def on_size(self, *args):
self.do_glsl()
def do_glsl(self):
self.glsl = effect_blur_v.format(float(self.size))
[docs]class FXAAEffect(EffectBase):
'''Applies very simple anti-aliasing via fxaa.'''
def __init__(self, *args, **kwargs):
super(FXAAEffect, self).__init__(*args, **kwargs)
self.glsl = effect_fxaa
class EffectFbo(Fbo):
'''An :class:`~kivy.graphics.Fbo` with extra functionality that allows
attempts to set a new shader. See :meth:`set_fs`.
'''
def __init__(self, *args, **kwargs):
kwargs.setdefault("with_stencilbuffer", True)
super(EffectFbo, self).__init__(*args, **kwargs)
self.texture_rectangle = None
def set_fs(self, value):
'''Attempt to set the fragment shader to the given value.
If setting the shader fails, the existing one is preserved and an
exception is raised.
'''
shader = self.shader
old_value = shader.fs
shader.fs = value
if not shader.success:
shader.fs = old_value
raise Exception('Setting new shader failed.')